An overview on the effects of Si/Al ratios on the properties of alkaliactivated cementitious materials in high temperatures

Siew Ying Tay¹⁾, Daeik Jang²⁾, and H. K. Lee³⁾

1), 2), 3) Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea

1) sytay@kaist.ac.kr

2) svs2002@kaist.ac.kr

3) haengki@kaist.ac.kr

ABSTRACT

In recent years, alkali-activated cementitious materials (AACMs) have been explored as promising alternatives to ordinary Portland cement (OPC), due to their thermal stability at high temperatures (Provis & Bernal, 2014). Recent studies have found that the properties of AACMs are closely influenced by the Si/Al ratios, which are determined by both the raw materials and alkali solution (Juengsuwattananon et al., 2019). Furthermore, previous studies have investigated the effects of Si/Al ratios on the workability, phase changes, microstructures, and the mechanical strengths of AACMs (Dehghani et al., 2021; Juengsuwattananon et al., 2019). In this regard, this study provides an overview in literatures of the effects of Si/Al ratios on the properties of AACMs. In addition, a preliminary study conducted by the authors regarding the effects of Si/Al ratios on the properties of alkali-activated fly ash/metakaolin AACMs when exposed to high temperature will be presented (Tay et al., 2023).

ACKNOWLEDGEMENT

This study was supported by the National Research Foundation of Korea (NRF), South Korea, grant funded by the Korea government (Ministry of Science and ICT) (No. 2017R1A5A1014883)

REFERENCES

Dehghani, A., Aslani, F., & Ghaebi Panah, N. (2021). "Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties", *Construction and Building Materials*, 293, 123527.

Juengsuwattananon, K., Winnefeld, F., Chindaprasirt, P., & Pimraksa, K. (2019). "Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer", *Construction and Building Materials*, 226, 406–417.

Provis, J. L., & Bernal, S. A. (2014). "Geopolymers and related alkali-activated materials", *Annual Review of Materials Research*, 44, 299–327.

Tay, S. Y., Jang, Daeik, Lee, H. K. (2023). "The effects of Si/Al ratios on the properties of the alkali-activated fly ash and metakaolin exposed to high temperatures," (in progress)

¹⁾ Ph. D Candidate

²⁾ Ph. D Graduate

³⁾ Professor